Posttranscriptional control of quorum-sensing-dependent virulence genes by DksA in Pseudomonas aeruginosa.
نویسندگان
چکیده
Pseudomonas aeruginosa controls the secretion of extracellular virulence factors, including rhamnolipids and LasB elastase, by the las and rhl quorum-sensing systems. Here, we mutated the dksA gene of P. aeruginosa by insertion of an Omega-Hg cassette. The mutant displayed growth rates similar to that of the wild type in rich medium but was impaired in growth in defined minimal medium. Production of rhamnolipids and LasB elastase by the dksA mutant was only 4 and 10%, respectively, of wild-type levels. These defects could be partially complemented by introduction of the plasmid-encoded dksA genes from P. aeruginosa or Escherichia coli. In the dksA mutant, the expression of rhlI was increased early during exponential growth, but expression of other quorum-sensing regulator genes-lasR, lasI, and rhlR-was not affected. Although the transcription of the lasB and rhlAB genes was comparable between the dksA mutant and the wild-type strain in peptone tryptic soy broth medium, we observed reduced translation of both genes in the dksA mutant. Similarly, we found that full translation of lasB and rhlAB genes in E. coli also requires the dksA gene. DksA is therefore a novel regulator involved in the posttranscriptional control of extracellular virulence factor production in P. aeruginosa.
منابع مشابه
Low concentrations of local honey modulate ETA expression, and quorum sensing related virulence in drug-resistant Pseudomonas aeruginosa recovered from infected burn wounds
Objective(s): Honey’s ability to kill microorganisms and even eradication of chronic infections with drug-resistant pathogens has been documented by numerous studies. The present study is focused on the action of honey in its sub-inhibitory levels to impact on the pathogens coordinated behaviors rather than killing them. Materials and Methods:</strong...
متن کاملInhibition of quorum sensing by a Pseudomonas aeruginosa dksA homologue.
The Pseudomonas aeruginosa las (lasR-lasI) and rhl (rhlR-rhlI) quorum-sensing systems regulate the expression of several virulence factors, including elastase and rhamnolipid. P. aeruginosa strain PR1-E4 is a lasR deletion mutant that contains a second, undefined mutation which allows production of elastase and rhamnolipid despite a nonfunctional las system. We have previously shown that this s...
متن کاملQuorum Sensing in Microbial Virulence
Cell-to cell communication occurs via a signaling pathway referred to as quorum sensing. There are four main types of these systems according to the chemical nature of signal molecules used by microorganisms to elicit expression of target genes in response to environmental stimuli or need of microbial communities. Type I system acts by using acyl homoserine lactones as signals to trigger the ex...
متن کاملIdentification of genes controlled by quorum sensing in Pseudomonas aeruginosa.
Bacteria communicate with each other to coordinate expression of specific genes in a cell density-dependent fashion, a phenomenon called quorum sensing and response. Although we know that quorum sensing via acyl-homoserine lactone (HSL) signals controls expression of several virulence genes in the human pathogen Pseudomonas aeruginosa, the number and types of genes controlled by quorum sensing ...
متن کاملRegulation of las and rhl quorum sensing in Pseudomonas aeruginosa.
The production of several virulence factors by Pseudomonas aeruginosa is controlled according to cell density through two quorum-sensing systems, las and rhl. The las system is comprised of the transcriptional activator protein LasR and of LasI, which directs the synthesis of the autoinducer PAI-1. Similarly, the rhl system consists of the transcriptional activator protein RhlR and of RhlI, whi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 185 12 شماره
صفحات -
تاریخ انتشار 2003